This is an old revision of the document!
This page can be used for writing up results in more or less finished form. See the talk page for discussion and more sketchy/incomplete ideas.
add definitions here
\begin{align*} T(a,b;c,d) &= \max_{\pi \in \Pi_{(a,b)\to(c,d)}} \sum_{(i,j)\in \pi} X_{i,j} \quad \textrm{(last passage percolation time from }(a,b)\textrm{ to }(c,d) \textrm{)} \\ \mathbf{V}^n &= (V^n_1,\ldots,V^n_{n-1}) \quad \qquad \qquad \qquad \qquad \qquad \qquad \textrm{(block finishing times)} \\ \mathbf{U}^n &= (T(1,1; n,1), T(1,1; n-1,2), \ldots, T(1,1; 1,n)) \qquad \textrm{(point to line last passage percolation)} \\ \mathbf{W}^n &= (T(1,1; n,1), T(2,1; n,2), \ldots, T(n,1; n,n)) \qquad \textrm{(line to line last passage percolation)} \end{align*}
Theorem. $ \mathbf{U}^n \stackrel{D}{=} \mathbf{W}^n $
Proof. add this
Conjecture. $ \mathbf{V}^n \stackrel{D}{=} \mathbf{W}^n $
Proposition. Let $f_n(x_1,\ldots,x_n)$ denote the joint density function of the random vector $\mathbf{U}^n$. Then we have the recurrence relation $$ f_{n+1}(x_1,\ldots,x_{n+1}) = \exp\left( - \sum_{k=1}^{n+1} x_k \right) \int_0^{x_1 \wedge x_2} \int_0^{x_2 \wedge x_3} \ldots \int_0^{x_n \wedge x_{n+1}} f_n(y_1,\ldots,y_n) \exp\left( \sum_{k=1}^{n+1} y_{k-1} \vee y_k \right) dy_n \, dy_{n-1} \ldots dy_2 \, dy_1 $$
add this
add an explanation of the algorithm for computing the joint density of the finishing times
Weak version of the main conjecture. For $n\ge2$ and $1\le k< n$, we have the equality in distribution $$ (V^n_k, V^n_{k+1}) \stackrel{D}{=} (U^n_k, U^n_{k+1}). $$
Consider as before an array $(X_{i,j)})_{i,j\ge 1}$ of iid $\operatorname{Exp}(1)$ random variables. Denote $$ X_{i,j}' = \begin{cases} 0 & \textrm{if }(i,j)=(1,1) \\ X_{i,j} & \textrm{otherwise.} \end{cases} $$ Let $T_{i,j}=T(1,1;i,j)$ denote the last passage percolation times (from the corner $(1,1)$) associated with the array $(X_{i,j})_{i,j}$. We have $$ (U^n_k,U^n_{k+1}) = (T_{k, n+1-k}, T_{k+1, n-k}). $$ Similarly, let $T'_{i,j}=T'(1,1;i,j)$ denote the last passage percolation times associated with the modified array $(X_{i,j}')_{i,j}$. We are actually only interested in the rectangular $(k+1)\times (n-k)$ subarray $$ \boldsymbol{\tau}^{(n,k)} = (T'_{i,j})_{1\le i\le k+1, 1\le j\le n-k} $$ Let $$ \mathbf{t}^{(n,k)} = (T''_{i,j})_{1\le i\le k+1, 1\le j\le n-k, (i,j)\neq (k+1,n-k)} $$ be a new array obtained from the array $\boldsymbol{\tau}^{(n,k)}$ by performing a jeu de taquin sliding operation (see figure).
Proposition. We have the equality in distribution $$ (V^n_k, V^n_{k+1}) \stackrel{D}{=} (T_{k, n+1-k}'', T_{k+1, n-k}''). $$
Proof. add this
In view of the proposition, we see that the weakened conjecture can be reformulated as follows:
Weak version of the conjecture, reformulated version. We have the equality in distribution $$ (T_{k, n+1-k}'', T_{k+1, n-k}'') \stackrel{D}{=} (T_{k, n+1-k}, T_{k+1, n-k}). $$
It can be checked that it is not the case that $T_{i,j}'' \stackrel{D}{=} T_{i,j}$ for all $i,j$.